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Abstract 

Recent results in parameter-dependent control of lin- 
ear parameter-varying (LPV) systems are applied to 
the problem of designing gain-scheduled pitch rate 
controllers for the F-16 VISTA (Variable-Stability 
In-Flight Simulator Test Aircraft). These meth- 
ods, based on parameter-dependent quadratic Lya- 
punov functions, take advantage of known a priori 
bounds on the parameters' rates of variation (the 
bounds may themselves be parameter-varying). The 
controller achieves an induced-£2-norm performance 
objective; Level 1 flying qualities are predicted. Sub- 
optimal solutions are obtained by solving a con- 
vex optimization problem described by linear ma- 
trix inequalities (LMIs). Incorporation of D-K iter- 
ation with "constant .D-scales" provides robustness 
to time-varying uncertainty. Parameter-varying per- 
formance weights are used to shape the desired per- 
formance at different points in the design envelope. 

1    Introduction 

The area of analysis and control of linear parameter- 
varying (LPV) systems has received much recent 
attention, primarily in order to develop systematic 
techniques for gain-scheduling. These systems re- 
semble linear systems that depend on one or more 
time-varying parameters; nonlinear systems are of- 
ten modelled in this form via a parameterized family 
of linearizations. The analysis of LPV systems dif- 
fer from that of linear time-varying (LTV) systems in 
that it considers whole families of parameter trajec- 
tories; moreover, the parameter values are available 
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only in real time, not in advance. 

The classical approach to gain-scheduled ?{„ con- 
trol involves designing an (LTI) %oo controller for 
each of a parameterized family of linearizations and 
then interpolating controller gains by operating con- 
dition. This heuristic approach yields satisfactory 
results if the parameters are sufficiently "slowly- 
varying."14 Early results in so-called "LPV synthe- 
sis" explicitly account for this time-variation using 
scaled small-gain arguments3,12 or single quadratic 
Lyapunov functions (SQLF);4,6'8 those designs tend 
to be conservative, though, partly because they al- 
low the parameters to vary arbitrarily quickly. More 
recent results2,7>16<17 use parameter-dependent Lya- 
punov functions (PDLF) to factor in a priori bounds 
on the parameters' rates of variation, reducing this 
conservatism. 

In this paper the PDLF technique7,16,17 is incor- 
porated into the D-K iteration framework in order 
to design robust, parameter-varying pitch rate con- 
trollers for the F-16 VISTA (Variable Stability In- 
Flight Simulator Test Aircraft). Sub-optimal solu- 
tions are obtained by solving a convex optimization 
problem described by a system of linear matrix in- 
equalities (LMIs), for which efficient algorithms are 
available. Parameter-varying performance weights 
are used to smoothly vary the desired performance 
within the design envelope. 

The remainder of this paper is organized as follows. 
Section 2 reviews some results on the control of LPV 
systems. Section 3 provides a robustness test for 
LPV systems. Section 4 applies these techniques to 
the F-16 VISTA. Section 5 summarizes the paper 
and discusses future prospects. 

This paper uses standard notation. In addition, 
gnxn denotes the set of real, symmetric, n x n ma- 
trices. For any matrix X G Snxn, X > 0 and X < 0 
respectively denote positive-definiteness (all of its 
eigenvalues are positive)  and negative-definiteness 



(all of its eigenvalues are negative). Continuously 
differentiable functions are called C1, and Cl{V, W) 
denotes the set of C1 functions from V to W. 

2    Control of LPV Systems 

This section reviews some results on the control 
of continuous-time, linear parameter-varying sys- 
tems. The reader may consult the applicable ref- 
erences7'16,17 (and the papers cited therein) for de- 
tails. 

An LPV system G(s, p) is a finite-dimensional linear 
system 

x(t) 
e(t) 

A(p(t))    B(p(t)) 
C(p(t))    D(p(t)) 

x(t) 
d(t) 

(2.1) 

whose state-space data are known continuous func- 
tions of time-varying parameters denoted by p £ Rs. 
The s parameter values are not known in advance; 
rather, they are measured in real-time. Assume that 
the bounded vector-valued parameter signal p £ £oo 
is a piecewise-C1 function of time and that there ex- 
ists a compact set V CHS for which p(t) £ V for all 
t > 0. 

Also assume that the rates of variation of the first 
s parameters p\,..., ps are each bounded in magni- 
tude by known positive scalars v\,..., z/j, i.e., 

\pi(t)\ < Vi for alH > 0 [i = 1,..., s). 

Denote these s rate-limited parameters and rate 
bounds by p := (pi,...,pg) £ RJ and v := 
(v\,..., vs) £ R*, respectively. Now v may itself be 
a continuous function of the parameters p, so that 
parameter trajectories must obey the differential in- 
clusion 

lft(*)l < "<(/>(<)) for all* >0 (t = 1,..., s) 

Parameter trajectories satisfying the above condi- 
tions for given V and v will be called allowable. 
Note that, at the cost of added notation, one can 
expand the results in this section to separate upper 
and lower bounds of the rates of variation. 

2.1    Induced £2-norm Analysis 

Given a family of allowable parameter trajectories 
defined by a parameter set V and a rate-of-variation 
bound v, one can bound the induced £2 norm of an 
LPV system using a parameter-dependent quadratic 
Lyapunov function. 

[ ATW + WA + Z-=1ßid^- WB CT  1 
BTW -7/ DT 

I              c D -7/ J 

Lemma 2.2 Given the LPV system in (2.1) and a 
performance level 7 > 0, suppose there exists a ma- 
trix function W £ C1(RJ,5nxn) such that W{p) > 0 
and (omitting dependence on p and p) 

<0 

(2.3) 
for all ßi £ [—Vi(p),Vi(p)] at each parameter value 
p £ V. Then for any allowable parameter trajec- 
tory the LTV system governed by (2.1) is exponen- 
tially stable. Furthermore, there exists 71 £ [0,7) 
for which ||e||2 < 7i||d||2 for all d £ C2 (if x(0) = 0). 

The constraints W(p) > 0 and (2.3) represent con- 
vex linear matrix inequality (LMI) constraints on the 
variables W and 7. Although these LMIs are clearly 
infinite dimensional, one can compute solutions us- 
ing the approximate method described in the sequel. 

2.2    Output-feedback synthesis 

Consider an LPV plant in the standard form 

x ]       ["  A(p)     5i(p)      B2{p)   1   [ x 
e     =     C^p)    Du(p)    Dl2{p) d 

V \      |_ c2{p)    D2i{p)    D22(p) J  L u 
(2.4) 

where x £ Rn, e £ Rn°, d £ R"d, u £ Rn", and 
y £ Rn", and other quantities are dimensioned ap- 
propriately. By assuming regularity (i.e., Di2 and 
D2i are full rank) and Dn = 0, (2.4) can be trans- 
formed into6 

x 
ei 

y 

A{P) 
Cn(p) 
Cl2(p) 
C2(p) 

Bn(p) 
0 
0 
0 

Bia(p) 
0 
0 
/ 

B2(P) 
0 
/ 
0 

x 

di 
d2 

u 
(2.5) 

The LPV y-Performance/is-Variation problem con- 
sists of finding a parameter-varying controller 

xc 

u 
M{p,p) 
Ck{p,p) 

Bk(p,'p) 
Dk{p,p) y 

(possibly dependent on p) for which the closed-loop 
system (omitting dependence on p and p) 

X 

xc 

ei 

- e2 

&clp      -Help 

^clp      Uclp 

X 

Xc. 

d2 

satisfies the conditions of Lemma 2.2 for a desired 
closed-loop norm 7 > 0. The following theorem gives 
necessary and sufficient conditions for solvability. 



Theorem 2.6 Given the compact set V, the vector- 
valued function v(p), the scalar 7 > 0, and the 
open-loop system (2.5), the LPV 7-Performance/V- 
Variation problem is solvable if and only if there ex- 
ist matrix functions X £ C1(R?,5nxn) and Y £ 
C1(R*,«Snx") such that (omitting dependence on p 
and p) 

ÄTX + XÄ-fC%C2 

T 2_,»=i ^^ dpi 
XBn     Cf 

B\XX -7/ 
0 

0 
-7I 

ÄY + YÄT - fB2B% 
.dY 
' dpi 

_y-s    ±v.pY YCf,     B, 

CuY 
0 

0 
-7/ 

X 
I 

I 
Y >0 

<0 

(2.7) 

<0 

(2.8) 

(2.9) 

for all p £ V, where 

Ä = A-B12C2,   C[ = [CTXCT2} 
Ä = A-B2C12,    Bi = [5uBi2] 

The notation ±(-),- indicates that the inequalities 
must hold for every combination of +(-)i and — (•)«• 
Therefore, (2.7) and (2.8) each represent 2J LMI's. 

Controllers specified by arbitrary parameter-varying 
solutions X(p) and Y(p) typically depend explicitly 
on the parameter derivative p. On the other hand, 
Becker7 shows that in the case where the conditions 
of Theorem 2.6 are satisfied when X or Y is constant 
with respect to p, one can derive formulas for strictly 
proper (Dk = 0) controllers that are independent of 
p. Specifically, 

Ak = 

B„ = 
Ck   = 

where 

F 

L 

N'^A1 + X(A + B2F + LC2)Y + Z]M- 

N~lXL 

FYM~T 

-[jB^Y-1 + C12] 
— i/ =    -bX^Ci + Bui 

Z    =    [X(BXBT +LBj2) + (CfC1+Cf2F)Y]/1 

and M &, N are chosen as follows. A constant X and 
parameter-varying Y(p) admit the controller defined 
by choosing 

Similarly, a parameter-varying X(p) and constant Y 
admit the controller defined by choosing 

M = Y~1-X,    N = Y 

Holding both X and Y constant recovers the conser- 
vative SQLF controller,6,8 which allows for arbitrar- 
ily fast parameter variation. 

2.3    Computing Solutions 

The infinite-dimensionality of the inequalities in 
Theorem (2.6) demands approximate methods of so- 
lution for the sake of practical computation. One 
such method follows:16,17 

Pick scalar basis functions {/; £ C1(R?, R)}f2i and 
{gj £ C1(RJ,R)}^'1, and search over those X(p)'s 
and Y(p)'s that are linear combinations 

-Nx m = z;ifi /.■ mi. Y(P) = z-i, gj (p)Yi 

using constant matrices {X{ £ <Snx "}£!-* and {Yj £ 
Snxn}f^v Then (2.7)-(2.9) can be rewritten as 
(omitting dependence in p and p) 

Bf 

TZ^' 

w   w 
-7/ 

0 
w 
-7/ 

w   w 
-7/ 

0 

>o 

(*) 
-7/ 

<0 

(2.10) 

<0 

(2.11) 

(2.12) 

M = I-YX,    N = 1 

where the shorthand (*) denotes the implied trans- 
poses. The problem thus consists of finding real, 
symmetric matrices {Xi}^J[ and {Yj}^ that sat- 
isfy the above inequalities for all p £ V, still an 
infinite-dimensional problem. 

Now approximate the parameter set V by a grid of 
L points {pk £ Rs}£=1, defining {pk £ RJ}£=1 ac- 
cordingly, and solve the inequalities (2.10)-(2.12) at 
these grid points. The conditions represent up to 
L(2J+1 + 1) LMIs in the Nx + NY matrix variables 
{{^i}f=i,{Yj}f=i}- Note that minimizing 7 is a 
convex optimization problem, since the inequalities 
are affine in 7 as well. 



3    Robust LPV Systems 4    A Design Example 

This section derives a simple robustness test and 
proposes an ad hoc method for making the preced- 
ing control synthesis robust. Consider the analysis 
of an LPV system 

= G(s,p) 

put in feedback with a block-diagonal, memoryless 
linear time-varying (uncertainty) operator 

w(t) = A{t)z{t) 

where w, z 6 Rn*, d G R"d, and e G R"e. Assume 
that the block structure of A is consistent with a set 
A C Sn*xn*. Define a corresponding set of scalings 

SA := {S E Sn*xn* :AS = SA for all A G A} 

An elementary small-gain argument establishes the 
following sufficient conditions for robustness to (ar- 
bitrarily quickly) time-varying uncertainty. 

Proposition 3.1 Suppose there exists a continuous 
matrix function S : Rs —> SA such that for any al- 
lowable parameter trajectory p : R —> Rs the result- 
ing LTV system 

Gs(s,p) = 
S(p)     0 

0 In. 
G(s,p) S-HP)    o 

0 /„„ 

is exponentially stable and ||Gs(s, p)\\i2 < 7 (given 
zero initial conditions). Then for any allowable pa- 
rameter trajectory p and any A satisfying 

ä(A(t)) < 1/7 

the LTV system Fu(G(s, p),A) also is exponentially 
stable and \\Fu(G(s, p),A)\\i2 < 7 for zero initial 
conditions. 

This suggests that one can design robust LPV con- 
trollers by alternating (in obvious fashion) between 
controller synthesis and computation of parameter- 
varying scaling matrices S(p), as in D-K iter- 
ation. The design example in this paper uses 
an ad hoc choice of S(p): "zeroth-order" fits to 
frequency-dependent £)-scales that are obtained at 
each "frozen" grid point by applying the appropriate 
//-Tools commands for closed-loop analysis. There is 
also a more rigorous iterative approach2 that will not 
be addressed in this paper. 

This section presents an application of LPV syn- 
thesis to the pitch rate control of the F-16 VISTA 
over a specified flight envelope; a similar problem 
has been addressed15 using a small-gain method. 
The physical plant and certain design weights are 
parameter-varying, and a D-K iteration-like process 
is employed to enhance robust performance. 

4.1    Plant Modelling 

This design uses the standard short-period equations 
of motion9 

a Za(p) 
Ma{p) 

1 
Mq(p) 

p = p = (M,h) 

+ ZSAP) 

(4.1) 

ignoring the aerodynamic effects of the trailing edge 
flaps. Only the longitudinal dynamics of the aircraft 
are considered; the roll, yaw, and sideslip angles are 
assumed to be zero. In (4.1) the states (a,q), input 
Se, and parameters (M, h) respectively denote angle- 
of-attack & pitch rate, elevator deflection, and Mach 
number & altitude. 

The Flight Dynamics Directorate of the Wright Lab- 
oratory uses a high-fidelity, six degree-of-freedom, 
nonlinear model to simulate the F-16 VISTA.1 This 
simulation model includes accurate descriptions of 
the propulsion system, actuators, sensors, distur- 
bances, payload, atmosphere, rigid-body equations 
of motion, and aerodynamics for a wide range of 
Mach numbers, altitudes, and angles of attack. 

The LPV short-period model's state space data (the 
dimensional coefficients Za, Ma, Mq, Z$c, and M$e) 
were obtained by trimming and linearizing the non- 
linear model at level flight for the flight conditions 
marked in Table 1. The design region V was chosen 
accordingly, and these 21 grid points were used for 
the controller synthesis. 

h\M 0.35 0.45 0.55 0.65 0.75 0.85 
25000 ft X X X X 
15000 ft X X X X X 
5000 ft X X X X X X 
1000 ft X X X X X X 

Table 1: Grid points used for modeling & synthesis 

Data on the excess thrust and rate-of-climb of the 



F-16 VISTA suggest the bounds 

v2{p)    =    a(h)M 

da(h) 
dh )    >    \M(t)\ 

>    IM*) I 

on the parameters' rates of variation, where a(h) 
denotes the speed of sound as a function of altitude 
and VT = a(h)M denotes the aircraft's true velocity. 
Note that these bounds are conservative; achieving 
them would require vertical flight, for example. 

4.2    Problem Setup 

The objective here is to design for the F-16 VISTA a 
pitch-rate controller that provides robust command 
tracking with predicted Level 1 handling qualities.11 

Time-domain specifications for pitch-rate response 
are illustrated in Fig. 1 and listed in Table 2. Note 
that the "rise-time" parameter At varies with the 
true velocity Vr (in ft/sec). 

^SS 

Time (sec) 

Figure 1: Pitch rate handling qualities specifications 

Parameter Level 1 Level 2 
max ii (sec) 0.12 0.17 
max Aq2/Aqi 0.30 0.60 
max At (sec) 500/^r 1600/VT 
min At (sec) 9.0/VT %.2/VT 

Table 2: Pitch rate handling qualities specifications 

This design uses the model-matching control struc- 
ture shown in Fig. 2. The second-order reference 
model 

ref[ Sj-«' + 2Cw„Ä + w2> 

u) = 4 rad/s, ( = 0.6, 1/T = 10 rad/s 

meets Level 1 flying qualities over the entire design 
envelope. The first-order, parameter-varying com- 
mand and performance weights 

Wr(8,p) 

Wp(s,p) 

s +100    10 
100    s + 10 

s + 80    4 
AP) 

1 
80    s + 40Mqmax(p) 

reflect a uniform 10 rad/s command bandwidth, 
a maximum pitch-rate command qmax that varies 
across the design envelope as shown in Table 3, and 
steady-state tracking within 5%. 

h\M 0.35 0.45 0.55 0.65 0.75 0.85 
25000 ft 13 17 20 22 
15000 ft 12 15 18 21 23 
5000 ft 10 13 16 19 22 24 
1000 ft 11 14 17 20 23 25 

Table 3: Max. pitch-rate command qmax (deg/s) 

The design plant also includes actuator dynamics, 
additive sensor noise, multiplicative input uncer- 
tainty, and penalties on the elevator deflection angle 
and rate. The first-order actuator model 

Ga(s) 
20.2 

s + 20.2 

reflects a bandwidth of 20.2 rad/s.    The control 
weight 

" 21     0 
0     70 Ws = 

reflects elevator deflection angle and rate limits of 
21 deg and 70 deg/s, respectively. The parameter- 
dependent noise weight 

Wn(p) = 
0.5 0 
0     0.03 qmax(p) 

anticipates 0.5 deg of measurement error for a and 
0.03 qmax deg/s (about 3%) for q. The uncertainty 
weight 

Wu = 0.1 

represents 10% parametric and/or dynamic model- 
ing error. 

4.3    Design Results 

Several D-K iterations (using LPV synthesis) were 
performed in MATLAB on the 7th-order design 
plant.   LMILab10 was used to solve the controller 



wu 

WAs,p) 

Wn(p) 

K(s, p) 

o 

Ga(s) 

a,q 

Gref(s) 

-OHG(a,p) <?-W.p) 
+ 

Ws 
es 

Figure 2: The design plant 

synthesis LMIs, and //-Tools5 was used for closed- 
loop robustness analysis. The elementary basis func- 
tions 

[h{p] hip) f3(fi)] = \gi(p) 92{P) gz{p)] = [lMh] 

selected according to previous experience,2,13'16'17 

were used to vary the matrices X(p) and Y(p) with 
various degrees of complexity: constant X & Y, 
varying X(p) & constant Y, constant X & varying 
Y(p), and varying X{p) k Y(p). 

D-K X,Y X,Y(p) 
Iter. # 7 Too P 7 7oo          p 

1 2.60 1.90 1.79 1.49 1.14    1.13 
2 2.43 1.75 1.73 1.22 1.05     1.04 
3 2.42 1.74 1.72 1.19 1.04    1.03 
4 2.42 1.74 1.72 1.18 1.04    1.03 

Table 4: Closed-loop performance levels 

The closed-loop time-varying performance level 7 
achieved using Theorem 2.6 is shown in Table 4; con- 
straining the rate of variation of M an h clearly of- 
fers a significant improvement in performance. Also 
included are the maximum "frozen-point" (i.e. gain- 
scheduled) Tioo norms 

7oo =max||Gc(p(s,/?)||oo 

and structured singular values (cf. Figure 3) 

ß = max sup n[Gclp(ju), p)] 

obtained via pointwise H^ and //-analysis of the 
closed-loop systems. These indicate the controller's 
robustness at constant flight conditions. The two 
designs with varying X[p) offer no appreciable im- 
provement over the corresponding constant-X de- 
signs, so they have been omitted. 

1 

3 

0.8 

0.6 

0.4 

0.2 

frequency (rad/sec) 

Figure 3: Closed-loop p(ju>) after 4th iteration 

4.4    Nonlinear Simulation 

Figure 4 shows the results of a high-fidelity, 
parameter-varying, nonlinear simulation of the 
closed-loop step response, which demonstrates pre- 
dicted Level 1 flying qualities. The aircraft is ini- 
tially perturbed from trimmed, level flight at M = 
0.75 and h = 5000 ft. The response of the constant- 
X, Y controller is also shown, for comparison. 

5    Conclusions 

Recent results in parameter-dependent control of lin- 
ear parameter-varying systems are applied to the 
problem of robust, gain-scheduled pitch rate con- 
trol for the F-16 VISTA. Using parameter-dependent 
Lyapunov functions, a priori bounds on the pa- 
rameters' rates of variation, LMI-based convex op- 
timization, and parameter-varying design weights, 
this method achieves an induced-£2-norm perfor- 
mance objective while predicting Level 1 flying qual- 
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«10 en 

|   5 

i. 0 
~ varying X,Y(p) 

constant X,Y 
q_cmd 

time (sec) 
8 10 12 

Figure 4: Parameter-varying nonlinear simulation 

ities throughout the design envelope. Straightfor- 
ward D-K iteration with "constant D-scales" pro- 
vides robustness to time-varying uncertainty. On- 
going research includes expanding the parameter set 
(to encompass the full flight envelope) and including 
a parameter-varying reference model (while main- 
taining Level 1 flying qualities), and incorporating 
the robustness scales into the synthesis LMIs. 
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